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Regression Analysis 

The aim of this chapter is to obtain the best possible result for the measurement of data points for the 

fictive Engine Retardation. 

The results of any measurement can be misleading because of: 

• A low magnitude that cause inaccurate measurements. 

• The presence of measurement dips that result in significant variation in the calculated value over the 

period of a scan. 

• The results can be influenced by data spikes. 

• Unintentional generation, propagation and reception of electromagnetic energy among an 

electromagnetic device (engine, generator, etc.) with reference to unwanted effects (electromagnetic 

interference, or EMI) that such energy may induce. 

• Inaccurate measurement devices with too high deviations. 

All these effects can have massive influence of the accurate of a measurement. Most of the effects cannot 

be resolved without going further, but can be covered with the help of the algorithm described below. 

Here in this document, these misleading data points are simply called outliers. 

To calculate the straight regression line from fictive measurement points (called engine retardation), a 

floating Linear Least Squares Fit (LLSF) algorithm is used. The LLSF estimation is a good method if 

assumptions are met to obtain regression weights when analyzing the engine data. However, if the data 

does not satisfy some of these assumptions, then sample estimates and results can be misleading. 

Especially, outliers violate the assumption of normally distributed residuals in the least squares regression. 

The fact of outlying engine power data points (engine dips), in both the direction of the dependent (y-axis) 

and independent variables (x-axis / timestamp), to the least squares regression is that they can have a 

strong adverse effect on the estimate and they may remain unnoticed. Therefore, techniques like RANSAC 

(Random Sample Consensus) that are able to cope with these problems or to detect outliers (bad) and 

inliers (good) have been developed by scientists and implemented into SimplexNumerica.  

Robust consensus algorithms like RANSAC are important methods for analyzing data that are contaminated 

with outliers. It can be used to detect outliers and to provide resistant results in the presence of outliers.  

A new approach based on the Maximum Likelihood Estimator Sample Consensus (MLESAC1) and Random 

Sample Consensus (RANSAC2) for an improved Engine Retardation measurement routine inside the device 

is described for robustly estimating floating linear regression relations from engine power point 

correspondences. The method comprises two parts. The first is a new robust estimator MLESAC that is a 

generalization of the RANSAC estimator. It adopts the same sampling strategy as RANSAC to generate 

 

1 The MLESAC here represents an implementation of the MLESAC (Maximum Likelihood Estimator Sample 

Consensus) algorithm, as described in: "MLESAC: A new robust estimator with application to estimating 

image geometry", P.H.S. Torr and A. Zisserman, Computer Vision and Image Understanding, vol 78, 2000. 

2 http://de.wikipedia.org/wiki/RANSAC-Algorithmus 
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putative solutions, but chooses the solution that maximizes the likelihood rather than just the number of 

inliers. The second part of the algorithm is a general-purpose method for automatically parameterizing 

these relations, using the output of MLESAC. 

Quintessence:  

The new approach should be an established algorithm for maximum-likelihood estimation by random 

sampling consensus, devised for Engine Retardation measurement to avoid the influence of the above-

described misleading results.  

 

RANdom SAmple Consensus (RANSAC) 

The Random Sample Consensus (RANSAC) algorithm proposed by Fischler and Bolles3 is a general 

parameter estimation approach designed to cope with a large proportion of outliers in the input data. Its 

basic operations are: 

1. Select sample set 

2. Compute model 

3. Compute and count inliers 

4. Repeat until sufficiently confident 

 

Step ( i ) 

 

 

 

Step ( i + j ) 

 

Step 

n (result) 

Step ( n – j ) 

 

 

3 Martin A. Fischler and Robert C. Bolles (June 1981). "Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24 (6): 381–

395. doi:10.1145/358669.358692 
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Result 

The RANSAC steps in more details are4: 

1. Select randomly the minimum number of points required to determine the model parameters. 

2. Solve for the parameters of the model. 

3. Determine how many points from the set of all points fit with a predefined tolerance. 

4. If the fraction of the number of inliers over the total number points in the set exceeds a predefined 

threshold, re-estimate the model parameters using all the identified inliers and terminate. 

5. Otherwise, repeat steps 1 through 4 (maximum of N times). 

 

Briefly, RANSAC uniformly at random selects a subset of data samples and uses it to estimate model 

parameters. Then it determines the samples that are within an error tolerance of the generated model.  

These samples are considered as agreed with the generated model and called as consensus set of the 

chosen data samples. Here, the data samples in the consensus as behaved as inliers and the rest as outliers 

by RANSAC. If the count of the samples in the consensus is high enough, it trains the final model of the 

consensus with using them. It repeats this process for a number of iterations and returns the model that has 

the smallest average error among the generated models. As a randomized algorithm, RANSAC does not 

guarantee to find the optimal parametric model with respect to the inliers. However, the probability of 

reaching the optimal solution can be kept over a lower bound with assigning suitable values to algorithm 

parameters. 

 

 

4 From: Overview of the RANSAC Algorithm, Konstantinos G. Derpanis, kosta@cs.yorku.ca,Version 1.2,May 13, 2010. 

Or: M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image 

analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981. 
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Maximum Likelihood Estimator Sample Consensus 

(MLESAC) 

This chapter describes in a simple and concise way the robust estimator, MLESAC5, which can be used for 

calculation instead of the floating regression algorithm LLSF. 

In particular, MLESAC is well suited to estimating the Engine Retardation trend or more general, it manifolds 

the engine’s power data to timestamp miss relation in Engine Retardation measurement because of the fact 

that the timestamp is set maybe inaccurately inside the internal clock of the measurement device. 

Technical descriptions and own tests have shown that the RANSAC algorithm has been proven very 

successful for robust estimation, but with the robust negative log likelihood function having been defined 

as the quantity to be minimized it becomes apparent that RANSAC can be improved on. One of the 

problems with RANSAC is that if the threshold for considering inliers is set too high then the robust 

estimate can be very poor and the slope of the regression line goes wrong. 

As an improvement over RANSAC, MLESAC has a better estimate for elimination of noise dips for instance 

influenced by neighborhood machines. The minimal set point, initially selected by MLESAC, is known to 

provide a good estimate of the data relation. Hence, the initial estimate of the point basis provided by 

MLESAC is quite close to the true solution and consequently the nonlinear minimization typically avoids local 

minima. Then the parameterization of the algorithm is consistent, which means that during the gradient 

descent phase only data relations that might actually arise are searched for. It has been observed that the 

MLESAC method of robust fitting is good for initializing the parameter estimation when the data are 

corrupted by outliers. In this case, there are just two classes to which a datum might belong, inliers or outliers.  

Torr and Zisserman have shown that the implementation of MLESAC yields a modest to hefty benefit to all 

robust estimations with absolutely no additional computational burden. In addition, the definition of the 

maximum likelihood error allows it to suggest a further improvement against RANSAC. As the aim is to 

minimize the negative log likelihood of the data it makes sense to use this as the score for each of the 

random samples. 

After MLESAC is applied, nonlinear minimization is conducted using the method described in Gill and 

Murray6, which is a modification of the Gauss–Newton method. All the points are included in the 

minimization, but the effect of outliers is removed as the robust function places a ceiling on the value of 

their errors, unless the parameters move during the iterated search to a value where that correspondence 

might be reclassified as an inliers. This scheme allows outliers to be reclassed as inliers during the 

minimization itself without incurring additional computational complexity. This has the advantage of 

reducing the number of false classifications, which might arise by classifying the correspondences at too 

early a stage. 

 

5 MLESAC: A New Robust Estimator with Application to Estimating Image Geometry P. H. S. Torr 

Microsoft Research Ltd., St George House, I Guildhall St, Cambridge CB2 3NH, United Kingdom and A. Zisserman 

Robotics Research Group, Department of Engineering Science, Oxford University, OX1 3PJ, United Kingdom 

6 P. E. Gill andW. Murray, Algorithms for the solution of the nonlinear least-squares problem, SIAM J. Numer. 

Anal. 15(5), 1978, 977–992. 
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Evaluation of Samples 

To show some results of the new SimplexNumerica algorithms, the following samples are evaluated. All 

have simulated data randomized around the slope f(x) = m x + b, m = 1/36, b = 1000. The inverse value of 

the difference quotient (m) is equal to the rundown time in (s/W). The next figure shows two outliers down 

under the theoretical graph - fitted by RANSAC (green line). 

Example with two outliers: 

 

The above figure shows the theoretical regression line f(x) = m x + b in red, the floating Linear Least 

Squares Fit (LLSF or Linear Regression) in blue and the RANSAC line in green (on top of the red one).  

Result:  

RANSAC and theoretical line are nearly equal. The Linear Regression line drops away. 

The next figure has more outliers and some inliers to direct the real engine power. 
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The above figure has more outliers and some inliers to direct the real rundown slope. The Linear Regression 

(blue line) goes away again. RANSAC (dark green line) does not find the right way. But finally: MLESAC 

(bright green line) shows the right fit to the real inliers. 

 

The above figure is similar to the previous one, but the additional two outliers have more distant down 

under the real line as in the figure before. Result: RANSAC and MLESAC are fitting best and lying on the 

same line. 
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The bright green MLESAC regression line y(x) = m x + b yields best with the following statistical data:  

• Estimated Slope: m = -0.0276023 → 1 / 0.0276023 ~ 36 s/W 

• Estimated Y-axis Intercept: b = 999.415 ~ 1000 W 

• Maximum number of iterations: n = 1000 

• Distance to the model threshold: d = 0.001 

• Probability of at least one SampleData free from outliers = 99 % 

 

Conclusion: 

Also under these extremely difficult to identifying conditions, the MLESAC algorithm 

can accurately predict the right offset and slope of the Engine Power line with the 

result that the Engine Retardation is now the right one. 

Lastly, extreme outliers far from realism - but still the right regression line:
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